首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of peptide molecular mass and PEG chain length on the vasoreactivity of VIP and PACAP(1-38) in pegylated phospholipid micelles
Authors:Ashok Beena  Rubinstein Israel  Tsueshita Takaya  Onyüksel Hayat
Affiliation:Department of Biopharmaceutical Sciences (M/C 865), University of Illinois at Chicago, 833 S. Wood Street, Room 335, Chicago, IL 60612-7231, USA.
Abstract:Bioactive properties of certain amphipathic peptides are amplified when self-associated with sterically stabilized micelles (SSM) composed of polyethylene glycol (PEG)-conjugated phospholipids. The purpose of this study was to determine the effects of amphipathic peptide molecular mass and PEG chain length on vasoreactivity evoked by vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide, and pituitary adenylate cyclase-activating peptide(1-38) (PACAP(1-38)), a 38-amino acid neuropeptide, associated with PEGylated phospholipid micelles in vivo. Both peptides were incubated for 2 h with SSM composed of PEG with molecular mass of 2000 or 5000 grafted onto distearoyl-phosphatidylethanolamine (DSPE-PEG2000 or DSPE-PEG5000) before use. We found that regardless of peptide molecular mass, PEG chain length had no significant effects on peptide-SSM interactions. Using intravital microscopy, VIP associated with DSPE-PEG5000 SSM or DSPE-PEG2000 SSM incubated at 25 degrees C evoked similar vasodilation in the intact hamster cheek pouch microcirculation. Likewise, PACAP(1-38)-induced vasodilation was PEG chain length-independent. However, SSM-associated PACAP(1-38) evoked significantly smaller vasodilation than that evoked by SSM-associated VIP (P < 0.05) at 25 degrees C. When the incubation temperature was increased to 37 degrees C, SSM-associated PACAP(1-38)-induced vasodilation was now similar to that of SSM-associated VIP. This response was associated with a corresponding increase in alpha-helix content of both peptides in the presence of phospholipids. Collectively, these data indicate that for a larger amphipathic peptide, such as PACAP(1-38), greater kinetic energy or longer incubation period is required to optimize peptide-SSM interactions and amplify peptide bioactivity in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号