首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrate reductase and nitrate accumulation in relation to nitrate toxicity in Boronia megastigma
Authors:K. S. Reddy  R. C. Menary
Affiliation:R. C. Menary, Dept of Agricultural Science, Univ. of Tasmania, Hobart, Tasmania 7001, Australia.
Abstract:Moderate levels of N were toxic to the native Australian plant boronia (Boronia megastigma Nees). As NO-3 is the major N form available for plants under cultivated conditions, NO-3 reduction and accumulation patterns in boronia were examined following the supply of various levels of NO-3 to understand the physiological basis of this toxicity. At a low level of supplied NO-3 [15 mmol (plant)-1], NO-3 was reduced without any detectable accumulation and without nitrate reductase activity (NRA) reaching its maximum capacity. When higher NO-3 levels [≥25 mmol (plant)-1] were supplied, both NRA and NO-3 accumulation increased further. However, NRA increased to a maximum of ca 500 nmol NO-3 (g fresh weight)-1 h-1, both in the roots and leaves, irrespective of a 4-fold difference in the levels of supplied NO-3, whereas NO-3 continued to accumulate in proportion to the level of supplied NO-3. Chlorotic toxicity symptoms appeared on the leaves at an accumulation of ca 32 μmol NO-3 (g fresh weight)-1. High endogenous NO-3 concentrations inhibited NRA. The low level of NRA in boronia was not limited by NO-3 or electron donor availability. It is concluded that the low NR enzyme activity is a genetic adaptation to the low NO-3 availability in the native soils of boronia. Thus, when NO-3 supply is high, the plat cannot reduce it at high rates, leading to large and toxic accumulations of the ion in the leaf tissues.
Keywords:Boronia    nitrate assimilation    nitrate fertilization    nitrate reductase inhibition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号