首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of transforming RNA on the synthesis of a protein with a secretory signal sequence in vitro.
Authors:K Hamada  T Kumazaki  S Satoh
Affiliation:Division of Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-0037, Japan.
Abstract:U5 small nuclear RNA itself can act as a clastogenic and transforming agent when transfected into cells. In the previous work, the 3' half of the U5 small nuclear RNA first stem structure (designated RNA3S) was capable of driving normal cells into tumorigenic cells when expressed with a poly(A) tail (RNA3S+). This transformation critically depended upon the polypurine sequence GGAGAGGAA in RNA3S+. In this work, we first examined the pre-beta-lactamase and luciferase (model secretory and nonsecretory proteins) translation with the in vitro synthesized RNA3S in rabbit reticulocyte lysate. The capped RNA3S with a poly(A) tail suppressed the translation. In addition, the polypurine sequence played a crucial role in affecting the secretory protein synthesis, indicating a primary action of RNA3S+. Further studies revealed that the oligodeoxynucleotides, corresponding to the polypurine and its antisense sequences, directly contacted 28 S rRNA in ribosome and 7SL RNA in signal recognition particle, respectively, and differentially affected the nascent chain elongation of secretory protein synthesis. These results suggest that RNA3S+ blocks a physiological regulatory function played by signal recognition particle and the ribosome in the secretory protein synthesis and support the idea that the transformation might result from a repressed cellular activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号