STAP-2 negatively regulates both canonical and noncanonical NF-kappaB activation induced by Epstein-Barr virus-derived latent membrane protein 1 |
| |
Authors: | Ikeda Osamu Sekine Yuichi Yasui Teruhito Oritani Kenji Sugiyma Kenji Muromoto Ryuta Ohbayashi Norihiko Yoshimura Akihiko Matsuda Tadashi |
| |
Affiliation: | Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan. |
| |
Abstract: | The signal-transducing adaptor protein 2 (STAP-2) is a recently identified adaptor protein that contains a pleckstrin homology (PH) and Src homology 2 (SH2)-like domains, as well as a proline-rich domain in its C-terminal region. In previous studies, we demonstrated that STAP-2 binds to MyD88 and IKK-alpha or IKK-beta and modulates NF-kappaB signaling in macrophages. In the present study, we found that ectopic expression of STAP-2 inhibited Epstein-Barr virus (EBV) LMP1-mediated NF-kappaB signaling and interleukin-6 expression. Indeed, STAP-2 associated with LMP1 through its PH and SH2-like domains, and these proteins interacted with each other in EBV-positive human B cells. We found, furthermore, that STAP-2 regulated LMP1-mediated NF-kappaB signaling through direct or indirect interactions with the tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) and TNFR-associated death domain (TRADD) proteins. STAP-2 mRNA was induced by the expression of LMP1 in human B cells. Furthermore, transient expression of STAP-2 in EBV-positive human B cells decreased cell growth. Finally, STAP-2 knockout mouse embryonic fibroblasts showed enhanced LMP1-induced cell growth. These results suggest that STAP-2 acts as an endogenous negative regulator of EBV LMP1-mediated signaling through TRAF3 and TRADD. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|