首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis.
Authors:W Liu  J N Hansen
Institution:Department of Chemistry and Biochemistry, University of Maryland, College Park 20742.
Abstract:Subtilin and nisin are gene-encoded antibiotic peptides that are ribosomally synthesized by Bacillus subtilis and Lactococcus lactis, respectively. Gene-encoded antibiotics are unique in that their structures can be manipulated by mutagenesis of their structural genes. Although subtilin and nisin share considerable structural homology, subtilin has a greater tendency than nisin to undergo spontaneous inactivation. This inactivation is a accompanied by chemical modification of the dehydroalanine at position 5 (DHA5) with a kinetic first-order t1/2 of 0.8 days. It was hypothesized that the R group carboxyl of Glu4 in subtilin participates in the chemical modification of the adjacent DHA5. Noting that nisin has Ile at position 4, site-directed mutagenesis was used to change Glu4 of subtilin to Ile, in order to eliminate this carboxyl-group participation. The DHA5 of this mutant subtilin (E4I-subtilin) underwent modification with a t1/2 of 48 days, which is 57-fold slower than natural subtilin, and the rate of loss of biological activity dropped by a like amount. These results suggest that an intact DHA5 is critical for subtilin activity against bacterial spore outgrowth. A double mutant of subtilin, in which the DHA5 residue of E4I-subtilin was mutated to Ala was devoid of detectable inhibition against spore outgrowth. The specific activity of E4I-subtilin was 3-4-fold higher than natural subtilin, suggesting that an increase in the hydrophobicity of the N-terminal end of the molecule enhances activity. These are the first mutants of subtilin that have been reported, and E4I-subtilin is the first example of any lantibiotic whose properties have been improved by mutagenesis. In order to carry out the mutagenesis, a host-vector pair was constructed that permits a deletion replacement in which the natural subtilin gene is replaced by the mutant gene at the normal location in the chromosome. This maintains normal gene dosage and regulatory responses, as well as eliminates ambiguities caused by expression of the normal and mutant genes in the same cell.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号