首页 | 本学科首页   官方微博 | 高级检索  
     


Hypermutagenesis in mutA cells is mediated by mistranslational corruption of polymerase, and is accompanied by replication fork collapse
Authors:Al Mamun Abu Amar M  Gautam Satyendra  Humayun M Zafri
Affiliation:University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, USA.
Abstract:Elevated mistranslation induces a mutator response termed translational stress‐induced mutagenesis (TSM) that is mediated by an unidentified modification of DNA polymerase III. Here we address two questions: (i) does TSM result from direct polymerase corruption, or from an indirect pathway triggered by increased protein turnover? (ii) Why are homologous recombination functions required for the expression of TSM under certain conditions, but not others? We show that replication of bacteriophage T4 in cells expressing the mutA allele of the glyV tRNA gene (Asp→Gly mistranslation), leads to both increased mutagenesis, and to an altered mutational specificity, results that strongly support mistranslational corruption of DNA polymerase. We also show that expression of mutA, which confers a recA‐dependent mutator phenotype, leads to increased lambdoid prophage induction (selectable in vivo expression technology assay), suggesting that replication fork collapse occurs more frequently in mutA cells relative to control cells. No such increase in prophage induction is seen in cells expressing alaVGlu tRNA (Glu→Ala mistranslation), in which the mutator phenotype is recA‐independent. We propose that replication fork collapse accompanies episodic hypermutagenic replication cycles in mutA cells, requiring homologous recombination functions for fork recovery, and therefore, for mutation recovery. These findings highlight hitherto under‐appreciated links among translation, replication and recombination, and suggest that translational fidelity, which is affected by genetic and environmental signals, is a key modulator of replication fidelity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号