首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic studies on the reaction of p-hydroxybenzoate hydroxylase. Agreement of steady state and rapid reaction data.
Authors:M Husain  V Massey
Abstract:p-Hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens is a NADPH-dependent, FAD-containing monooxygenase catalyzing the hydroxylation of p-hydroxybenzoate to form 3,4-dihydroxybenzoate in the presence of NADPH and molecular oxygen. The mechanism of this three-substrate reaction was investigated in detail at pH 6.6, 4 degrees C, by steady state kinetics, stopped flow spectrophotometry, and equilibrium binding experiments. The initial velocity patterns are consistent with a ping-pong type mechanism which involves two ternary complexes between the enzyme and substrates. The first ternary complex is formed by random addition of p-hydroxybenzoate and NADPH to the enzyme, followed by the release of the first product (NADP+). The reduced enzyme . p-hydroxybenzoate complex now reacts with oxygen, the third substrate, to form the second ternary complex. The enzyme-bound p-hydroxybenzoate then reacts with the activated oxygen to give 3,4-dihydroxybenzoate which is released regenerating the oxidized enzyme for the next cycle. The binding of p-hydroxybenzoate to the oxidized enzyme to form a 1:1 complex causes large, characteristic spectral perturbations and fluorescence quenching. The dissociation constant for the enzyme . substrate complex was obtained by titrations in which absorbance and/or fluorescence quenching was measured. The binding constants of NADPH to the enzyme with and without p-hydroxybenzoate were determined kinetically by measuring the rate of reduction of the enzyme at different concentrations of NADPH. The reduction of the enzyme proceeds extremely slowly in the absence of p-hydroxybenzoate. The presence of the substrate causes a dramatic stimulation (140,000-fold) in the rate of enzyme reduction. The anaerobic reduction of the enzyme by NADPH in the presence of p-hydroxybenzoate produces a transient charge-transfer intermediate. On the basis of the proposed mechanism, the dissociation constants for p-hydroxybenzoate and NADPH as well as the Michaelis constants for all the three substrates were calculated from the initial velocity data. The agreement obtained between various kinetic parameters from the initial rate measurements and those calculated from the individual rate constants determined in rapid reactions, strongly supports the proposed mechanism for the p-hydroxybenzoate hydroxylase reaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号