首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High performance screening, structural and molecular dynamics analysis to identify H1 inhibitors from TCM Database@Taiwan
Authors:Chang Su-Sen  Huang Hung-Jin  Chen Calvin Yu-Chian
Institution:Laboratory of Computational and Systems Biology, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
Abstract:New-type oseltamivir-resistant H1N1 influenza viruses have been a major threat to human health since the 2009 flu pandemic. To resolve the drug resistance issue, we aimed to identify a new type of inhibitors against H1 from traditional Chinese medicine (TCM) by employing the world's largest TCM database () for virtual screening and molecular dynamics (MD). From the virtual screening results, sodium (+)-isolaricireinol-2 alpha-sulfate, sodium 3,4-dihydroxy-5-methoxybenzoic acid methyl ester-4-sulfate, sodium (E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3S-sulfonate, and 3-methoxytyramine-betaxanthin were identified as potential drug-like compounds. MD simulation of the binding poses with the key residues Asp103 and Glu83, as well as other binding site residues, identified higher numbers of hydrogen bonds than N-Acetyl-D-Glucosamine (NAG), the natural ligand of the esterase domain in H1. Ionic bonds, salt bridges, and electrostatic energy also contribute to binding stability. Key binding residues include Lys71, Glu83, Asp103, and Arg238. Structural moieties promoting H-bond or salt bridge formations at these locations greatly contribute to a stable ligand-protein complex. An available sodium atom for ionic interactions with Asp103 can further stabilize the ligands. Based on virtual screening, MD simulation, and interaction energy evaluation, TCM candidates demonstrate good potential as novel H1 inhibitors. In addition, the identified stabilizing features can provide insights for designing highly stable H1 inhibitors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号