首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of conserved amino acids N-terminal of the PKC epsilon C1b domain crucial for protein kinase C epsilon-mediated induction of neurite outgrowth
Authors:Ling Mia  Trollér Ulrika  Zeidman Ruth  Stensman Helena  Schultz Anna  Larsson Christer
Affiliation:Lund University, Molecular Medicine, Malm? University Hospital, 205 02 Malm?, Sweden.
Abstract:We have shown previously that protein kinase C (PKC) epsilon can induce neurite outgrowth independently of its catalytic activity via a region encompassing its C1 domains. In this study we aimed at identifying specific amino acids in this region crucial for induction of neurite outgrowth. Deletion studies demonstrated that only 4 amino acids N-terminal and 20 residues C-terminal of the C1 domains are necessary for neurite induction. The corresponding regions from all other novel isoforms but not from PKCalpha were also neuritogenic. Further mutation studies indicated that amino acids immediately N-terminal of the C1a domain are important for plasma membrane localization and thereby for neurite induction. Addition of phorbol ester made this construct neurite-inducing. However, mutation of amino acids flanking the C1b domain reduced the neurite-inducing capacity even in the presence of phorbol esters. Sequence alignment highlighted an 8-amino acid-long sequence N-terminal of the C1b domain that is conserved in all novel PKC isoforms. Specifically, we found that mutations of either Phe-237, Val-239, or Met-241 in PKCepsilon completely abolished the neurite-inducing capacity of PKCepsilon C1 domains. Phorbol ester treatment could not restore neurite induction but led to a plasma membrane translocation. Furthermore, if 12 amino acids were included N-terminal of the C1b domain, the C1a domain was dispensable for neurite induction. In conclusion, we have identified a highly conserved sequence N-terminal of the C1b domain that is crucial for neurite induction by PKCepsilon, indicating that this motif may be critical for some morphological effects of PKC.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号