Expression and partial characterization of kinesin-related proteins in differentiating and adult skeletal muscle |
| |
Authors: | Ginkel L M Wordeman L |
| |
Affiliation: | Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA. |
| |
Abstract: | Using pan-kinesin antibodies to screen a differentiating C2C12 cell library, we identified the kinesin proteins KIF3A, KIF3B, and conventional kinesin heavy chain to be present in differentiating skeletal muscle. We compared the expression and subcellular localization characteristics of these kinesins in myogenic cells to others previously identified in muscle, neuronal, and mitotic systems (KIF1C, KIF3C, and mitotic-centromere-associated kinesin). Because members of the KIF3 subfamily of kinesin-related proteins showed altered subcellular fractionation characteristics in differentiating cells, we focused our study of kinesins in muscle on the function of kinesin-II. Kinesin-II is a motor complex comprised of dimerized KIF3A and KIF3B proteins and a tail-associated protein, KAP. The Xenopus homologue of KIF3B, Xklp3, is predominantly localized to the region of the Golgi apparatus, and overexpression of motorless-Xklp3 in Xenopus A6 cells causes mislocalization of Golgi components (). In C2C12 myoblasts and myotubes, KIF3B is diffuse and punctate, and not primarily associated with the Golgi. Overexpression of motorless-KIF3B does not perturb localization of Golgi components in myogenic cells, and myofibrillogenesis is normal. In adult skeletal muscle, KIF3B colocalizes with the excitation-contraction-coupling membranes. We propose that these membranes, consisting of the transverse-tubules and sarcoplasmic reticulum, are dynamic structures in which kinesin-II may function to actively assemble and maintain in myogenic cells. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|