首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Staphylococcal nuclease makes a single non-random cut in the simian virus 40 viral minichromosome.
Authors:O Sundin  A Varshavsky
Institution:Department of Biology Massachusetts Institute of Technology Cambridge, Mass. 02139, U.S.A.
Abstract:When compact simian virus 40 (SV40) minichromosomes are treated with staphylococcal nuclease at 0 °C under limit-digest conditions, about one-third of the minichromosomes remain resistant to nuclease, a third of them are nicked, while the remaining third suffer one and only one double-stranded cut. Results show that each cleaved minichromosome is cut only once and afterwards becomes resistant to further fragmentation. This is in marked contrast to the action of staphylococcal nuclease at 37 °C, which leads to a rapid fragmentation of all minichromosomes to oligo- and mononucleosomes.The SV40 linear DNA III produced by low-temperature nuclease digestion of minichromosomes was redigested with single-cut restriction endonucleases. By this mapping procedure it was determined that the location of the staphylococcal nuclease cut is neither unique nor random; it occurs at a number of discrete sites on the DNA, half of all cuts being concentrated at the origin of replication and nearby in the “late” portion of the SV40 genome. Control experiments have shown that when staphylococcal nuclease digests naked SV40 DNA at 0 °C it does not “hesitate” after the first cut. Although initial cuts in the purified DNA are non-random in location, their distribution is quite different from that generated by a low-temperature nuclease digestion of compact SV40 minichromosomes. Possible interpretations of these results are discussed in view of the recent finding that a specific region of the SV40 genome is uniquely exposed in the minichromosome (Varshavsky et al., 1978, 1979; Scott &; Wigmore, 1978).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号