首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spinal stability and role of passive stiffness in dynamic squat and stoop lifts
Authors:Bazrgari B  Shirazi-Adl A
Institution:Division of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montreal, Québec, Canada.
Abstract:The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号