首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Absolute Proteome and Phosphoproteome Dynamics during the Cell Cycle of Schizosaccharomyces pombe (Fission Yeast)
Authors:Alejandro Carpy  Karsten Krug  Sabine Graf  André Koch  Sasa Popic  Silke Hauf  Boris Macek
Institution:From the ‡ Proteome Center Tuebingen, University of Tuebingen, Tuebingen 72076, Germany.;¶Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, 72076, Germany
Abstract:To quantify cell cycle-dependent fluctuations on a proteome-wide scale, we performed integrative analysis of the proteome and phosphoproteome during the four major phases of the cell cycle in Schizosaccharomyces pombe. In highly synchronized cells, we identified 3753 proteins and 3682 phosphorylation events and relatively quantified 65% of the data across all phases. Quantitative changes during the cell cycle were infrequent and weak in the proteome but prominent in the phosphoproteome. Protein phosphorylation peaked in mitosis, where the median phosphorylation site occupancy was 44%, about 2-fold higher than in other phases. We measured copy numbers of 3178 proteins, which together with phosphorylation site stoichiometry enabled us to estimate the absolute amount of protein-bound phosphate, as well as its change across the cell cycle. Our results indicate that 23% of the average intracellular ATP is utilized by protein kinases to phosphorylate their substrates to drive regulatory processes during cell division. Accordingly, we observe that phosphate transporters and phosphate-metabolizing enzymes are phosphorylated and therefore likely to be regulated in mitosis.Cell replication involves a complex series of highly regulated and evolutionary conserved events, called the “cell cycle.” Aberrations in the cell cycle have severe implications and can cause cancerous growth. A detailed understanding of the cell cycle and its regulation may identify additional targets for cancer therapy (13). The cell cycle has been the subject of previous proteomics studies. Olsen et al. (4) measured the dynamics of thousands of proteins and phosphorylation events across cell cycle phases of HeLa cells, providing insights into the underlying regulatory mechanisms and pointing to a general increase in phosphorylation site occupancy during M phase. In a targeted study, Pagliuca et al. (5) investigated interactors of cyclins E1, A2, and B1 in HeLa cells, revealing key mechanistic links between DNA replication and mitosis.Schizosaccharomyces pombe (fission yeast) is a unicellular organism, which can easily be genetically manipulated and carries many cell cycle features similar to metazoan cells. It is an important model organism to study the cell cycle and its checkpoint controls (6). Recent global proteomics studies of yeasts and their cell cycle (713) have mainly focused on Saccharomyces cerevisiae (budding yeast), with only a few studies of fission yeast (14, 15), although the fission yeast cell cycle may be more representative of eukaryotic cell cycles (16). However, attention of the proteomics community toward S. pombe is increasing. Recent proteomics studies covered up to 4087 S. pombe proteins (71% of the predicted proteome) and 1544 phosphoproteins in both asynchronous and synchronized cell cultures (1722); however, a comprehensive analysis of the S. pombe cell cycle is so far missing.Here, we use high resolution mass spectrometry in combination with stable isotope labeling by amino acids in the cell culture (SILAC)1 method, termed super-SILAC (23), and intensity-based absolute quantification (iBAQ) (24) to measure relative and absolute dynamics of the proteome and phosphoproteome during the cell cycle of fission yeast. We estimate copy numbers for 3178 S. pombe proteins, and we combine these data with calculated phosphorylation site stoichiometry to estimate the total amount of protein-bound phosphate and its dynamics across the cell cycle. Providing the global absolute dynamics and stoichiometry of proteins and their modifications will be a valuable resource for classical and systems biologists alike.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号