首页 | 本学科首页   官方微博 | 高级检索  
     


Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum.
Authors:S F Baron and J G Ferry
Abstract:The membrane-associated coenzyme F420-reducing hydrogenase of Methanobacterium formicicum was purified 87-fold to electrophoretic homogeneity. The enzyme contained alpha, beta, and gamma subunits (molecular weights of 43,000, 36,700, and 28,800, respectively) and formed aggregates (molecular weight, 1,020,000) of a coenzyme F420-active alpha 1 beta 1 gamma 1 trimer (molecular weight, 109,000). The hydrogenase contained 1 mol of flavin adenine dinucleotide (FAD), 1 mol of nickel, 12 to 14 mol of iron, and 11 mol of acid-labile sulfide per mol of the 109,000-molecular-weight species, but no selenium. The isoelectric point was 5.6. The amino acid sequence I-N3-P-N2-R-N1-EGH-N6-V (where N is any amino acid) was conserved in the N-termini of the alpha subunits of the F420-hydrogenases from M. formicicum and Methanobacterium thermoautotrophicum and of the largest subunits of nickel-containing hydrogenases from Desulfovibrio baculatus, Desulfovibrio gigas, and Rhodobacter capsulatus. The purified F420-hydrogenase required reductive reactivation before assay. FAD dissociated from the enzyme during reactivation unless potassium salts were present, yielding deflavoenzyme that was unable to reduce coenzyme F420. Maximal coenzyme F420-reducing activity was obtained at 55 degrees C and pH 7.0 to 7.5, and with 0.2 to 0.8 M KCl in the reaction mixture. The enzyme catalyzed H2 production at a rate threefold lower than that for H2 uptake and reduced coenzyme F420, methyl viologen, flavins, and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Specific antiserum inhibited the coenzyme F420-dependent but not the methyl viologen-dependent activity of the purified enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号