首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of PRPP and nucleoside tri and tetraphosphate pools in Escherichia coli under conditions of nitrogen starvation.
Authors:I S Villadsen and  O Michelsen
Abstract:The ribonucleoside triphosphate, deoxyribonucleoside triphosphate, 3' -diphosphate guanosine 5' -diphosphate (ppGpp), and 5-phosphoribosyl 1-pyrophosphate (PRPP) pools in Escherichia coli B were determined by thin-layer chromatography during changing conditions to ammonium starvation. The intracellular concentrations of all nucleotides were found to change in a well-defined order several minutes before andy observed change in the optical density of the culture. The levels of purine nucleoside triphosphates (adenosine 5' -triphosphate CTP], dCTP) and uridine nucleotides (uridine 5' -triphosphate, deoxythymidine 5'-triphosphate). The deoxyribonucleotides thus behaved as the ribonucleotides. The levels of ppGpp increased 11-fold after the decrease in uridine nucleotides, when the accumulation of stable ribonucleic acid (RNA) stopped. The level of the nucleotide pool did not stabilize until 30 min after the change in optical density. The pool of dGTP dropped concomitantly with the pool of CTP. The nucleotide precursor PRPP exhibited a transient increase, wtih maximum value of four times the exponential levels at the onset of starvation. Apparently the cell adjusts early to starvation by reducing either the phosphorylating activity or the nucleotide biosynthetic activity. As in other downshift systems, the accumulation of stable RNA stopped before the break in optical density and before the stop in protein accumulation. Cell divisions were quite insensitive to the control mechanisms operating on RNA and protein accumulation under ammonium starvation, since the cells continued to divide for 21 min without any net accumulation of RNA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号