首页 | 本学科首页   官方微博 | 高级检索  
   检索      


1H NMR structural characterization of the cytochrome c modifications in a micellar environment
Authors:Chevance S  Le Rumeur E  de Certaines J D  Simonneaux G  Bondon A
Institution:Laboratoire de Chimie Organométallique et Biologique, UMR CNRS 6509, Institut de Chimie, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France.
Abstract:The interaction of cytochrome c with micelles of sodium dodecyl sulfate was studied by proton NMR spectroscopy. The protein/micelles ratio was found to be crucial in controlling the extent of the conformational changes in the heme crevice. Over a range of ratios between 1:30 and 1:60, the NMR spectra of the ferric form display no paramagnetic signals due to a moderately fast exchange between intermediate species on the NMR time scale. This is consistent with an interconversion of bis-histidine derivatives (His18-Fe-His26 and His18-Fe-His33). Further addition of micelles induces a high-spin species that is proposed to involve pentacoordinated iron. The resulting free binding site, also encountered in the ferrous form, is used to complex exogenous ligands such as cyanide or carbon monoxide. Attribution of the heme methyls was performed by means of exchange spectroscopy through ligand exchange or electron transfer. The heme methyl shift pattern of the micellar cyanocytochrome in the ferric low spin form is different from the pattern of both the native and the cyanide cytochrome c adduct, in the absence of micelles, reflecting a complete change of the heme electronic structure. Analysis of the electron self-exchange reaction between the two redox states of the micellar cyanocytochrome c yields a rate constant of 2.4 x 10(4) M(-1) s(-1) at 298 K, which is surprisingly close to the value observed in the native protein.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号