首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential
Institution:3. Universidad Autónoma Metropolitana Unidad Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, Iztapalapa 09340, México;4. Unidad de Medicina Experimental, Facultad de Medicina, UNAM-Hospital General de México, Dr. Balmis 148, Colonia Doctores, Cuauhtémoc 06726, México
Abstract:The cellular compartmentation of heavy metals was analyzed using mulberry leaves, in which CaCO3-forming idioblasts are situated in the epidermal layer. Germinated mulberry seedlings were grown on hydroponic culture medium containing strontium (Sr), zinc (Zn), and cadmium (Cd) with and without supplemental calcium (Ca). After ten weeks of growth, toxic effects of these metals were assessed by measuring shoot length and chlorophyll content of leaves. Sr and Cd treatment at a higher dose (4 mM for Sr, 25 μM for Cd) resulted in signs of toxicity, whereas no distinct phytotoxicity was observed at 500 μM Zn. Elemental mapping of leaves using an energy-dispersive X-ray microanalysis system fitted to variable-pressure scanning electron microscope showed that Sr and Zn were preferentially accumulated in the idioblasts and Cd was not detected in any type of leaf cell. The deposition site of Sr was confined to cell wall sacs developing in idioblasts. The Sr sink capacity in leaves was more than 30 mg/g dry weight, which equaled the Ca sink capacity. Exposure of Sr + Ca led to the co-localization of Sr and Ca in the same cell wall sac, in which Ca and Sr deposition were each estimated to be 60–80 ng. The localization site of Zn was cell walls of a dome-shaped protrusion (cap) of idioblasts, together with silicon (Si) originating as a contaminant in tap water used for culturing. Mulberry idioblasts were unique in showing metal-dependent distribution to two subcellular sites (cell wall sac and cap region) of idioblasts. In conclusion, mulberry plant is a candidate for phytoremediation of radiostrontium because of their Sr-hyperaccumulating capacity with sufficient leaf biomass production.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号