首页 | 本学科首页   官方微博 | 高级检索  
     


QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments
Authors:Weinig Cynthia  Stinchcombe John R  Schmitt Johanna
Affiliation:Department of Ecology and Evolutionary Biology Box G-W, Brown University, Providence, RI 02912, USA. cweinig@umn.edu
Abstract:Quantitative-genetic approaches have offered significant insights into phenotypic evolution. However, quantitative-genetic analyses fail to provide information about the evolutionary relevance of specific loci. One complex and ecologically relevant trait for plants is their resistance to herbivory because natural enemies can impose significant damage. To illustrate the insights of combined molecular and ecological research, we present the results of a field study mapping quantitative trait loci (QTL) for resistance and tolerance to natural rabbit herbivory in the genetic model, Arabidopsis thaliana. Replicates of the Ler x Col recombinant inbred lines were planted into field sites simulating natural autumn and spring seasonal germination cohorts. Shortly after flowering, herbivores removed the main flowering inflorescence (apical meristem). We found several main-effect QTL for resistance within each seasonal cohort and significant QTL-season interactions, demonstrating that the loci underlying resistance to a single herbivore differ across seasonal environments. The presence of QTL x environment also shows that variation at specific loci is only available to selection in some environments. Despite significant among-line variance components, no QTL for tolerance were detected. The combined results of the quantitative-genetic and QTL analyses demonstrate that many loci of small effect underlie tolerance to damage by rabbits, and counter the hypothesis of locus-specific tradeoffs between resistance and tolerance. The results also provide insights as to the locus-specific nature of evolutionary constraints, i.e. some loci influence flowering time and resistance in both seasonal cohorts. Our results show how linking molecular-genetic tools with field studies in ecologically relevant settings can clarify the role of specific loci in the evolution of quantitative traits.
Keywords:Arabidopsis thaliana              phenotypic evolution  QTL mapping  resistance  tolerance
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号