Inferring Phylogenetic Networks with Maximum Pseudolikelihood under Incomplete Lineage Sorting |
| |
Authors: | Claudia Solís-Lemus Cécile Ané |
| |
Affiliation: | 1Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America;2Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, United States of America;Harvard University, UNITED STATES |
| |
Abstract: | Phylogenetic networks are necessary to represent the tree of life expanded by edges to represent events such as horizontal gene transfers, hybridizations or gene flow. Not all species follow the paradigm of vertical inheritance of their genetic material. While a great deal of research has flourished into the inference of phylogenetic trees, statistical methods to infer phylogenetic networks are still limited and under development. The main disadvantage of existing methods is a lack of scalability. Here, we present a statistical method to infer phylogenetic networks from multi-locus genetic data in a pseudolikelihood framework. Our model accounts for incomplete lineage sorting through the coalescent model, and for horizontal inheritance of genes through reticulation nodes in the network. Computation of the pseudolikelihood is fast and simple, and it avoids the burdensome calculation of the full likelihood which can be intractable with many species. Moreover, estimation at the quartet-level has the added computational benefit that it is easily parallelizable. Simulation studies comparing our method to a full likelihood approach show that our pseudolikelihood approach is much faster without compromising accuracy. We applied our method to reconstruct the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), which is characterized by widespread hybridizations. |
| |
Keywords: | |
|
|