Purification and characterization of a thermostable alkaline protease from alkalophilic Thermoactinomyces sp. HS682. |
| |
Authors: | K Tsuchiya Y Nakamura H Sakashita T Kimura |
| |
Affiliation: | Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan. |
| |
Abstract: | Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatographies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25,000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0. Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37 degrees C for 60 min. The optimum pH was pH 11.5-13.0 at 37 degrees C and the optimum temperature was 70 degrees C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80 degrees C and stability from pH 4-12.5 at 60 degrees C and below 75 degrees C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of microbial serine protease, although alanine of the NH2-terminal amino acid was deleted. |
| |
Keywords: | |
|
|