首页 | 本学科首页   官方微博 | 高级检索  
     


Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis
Authors:Panduri Vijayalakshmi  Weitzman Sigmund A  Chandel Navdeep S  Kamp David W
Affiliation:Division of Pulmonary and Critical Care,Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3010, USA.
Abstract:Asbestos causes pulmonary toxicity by mechanisms that in part involve reactive oxygen species (ROS). However, the precise source of ROS is unclear. We showed that asbestos induces alveolar epithelial cell (AEC) apoptosis by a mitochondrial-regulated death pathway. To determine whether mitochondrial-derived ROS are necessary for causing asbestos-induced AEC apoptosis, we utilized A549-rho(omicron) cells that lack mitochondrial DNA and a functional electron transport. As expected, antimycin, which induces an oxidative stress by blocking mitochondrial electron transport at complex III, increased dichlorofluoroscein (DCF) fluorescence in A549 cells but not in A549-rho(omicron) cells. Compared with A549 cells, rho(omicron) cells have less asbestos-induced ROS production, as assessed by DCF fluorescence, and reductions in total glutathione levels as well as less caspase-9 activation and apoptosis, as assessed by TdT-mediated dUTP nick end labeling staining and DNA fragmentation. A mitochondrial anion channel inhibitor that prevents ROS release from the mitochondria to the cytoplasm also blocked asbestos-induced A549 cell caspase-9 activation and apoptosis. Finally, a role for nonmitochondrial-derived ROS with exposure to high levels of asbestos (50 microg/cm(2)) was suggested by our findings that an iron chelator (phytic acid or deferoxamine) or a free radical scavenger (sodium benzoate) provided additional protection against asbestos-induced caspase-9 activation and DNA fragmentation in rho(omicron) cells. We conclude that asbestos fibers affect mitochondrial DNA and functional electron transport, resulting in mitochondrial-derived ROS production that in turn mediates AEC apoptosis. Nonmitochondrial-associated ROS may also contribute to AEC apoptosis, particularly with high levels of asbestos exposure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号