首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydantoin racemase from Arthrobacter aurescens DSM 3747: heterologous expression, purification and characterization
Authors:Wiese A  Pietzsch M  Syldatk C  Mattes R  Altenbuchner J
Institution:European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69012, Heidelberg, Germany. hdomingu@embl-heidelberg.de
Abstract:Interleukin-4 (IL-4) is a multifunctional cytokine that plays an important role in the regulation of various immune responses. However, the development of IL-4 or IL-4 variants into potential therapeutic drugs is hindered by the low efficiency of the in vitro refolding process of this protein. In this work, we have investigated the improvement of the refolding yield of IL-4 using two different rational design approaches. The first one is based on the so-called inverse hydrophobic effect and involved the replacement of a solvent exposed, non-conserved, hydrophobic residue (W91) by serine. This led to an increase in stability of 1.4 kcal mol(-1) and shifted the midpoint transition temperature (Tm) from 62 to 70 degrees C. The second approach is based on the stabilization of alpha-helices through the introduction of favorable local interactions. This strategy resulted in the following helix sequence for helix C of IL-4, 68ASAAEANRHKQLIRFLKRLDRNLWGLAG95. The mutant protein was stabilized by 0.5 kcal mol(-1), the Tm shifted to 68 degrees C, and a two-fold increase in the refolding yield was consistently observed. Our results make the large-scale production of IL-4 derivatives economically more viable, suggest that a similar approach can be applied to other related proteins, and may represent a general strategy to improve in vitro refolding yields through the selective optimization of the stability of alpha-helices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号