首页 | 本学科首页   官方微博 | 高级检索  
   检索      


NH(2)-terminal modification of a channel-forming peptide increases capacity for epithelial anion secretion
Authors:Broughman J R  Mitchell K E  Sedlacek R L  Iwamoto T  Tomich J M  Schultz B D
Institution:Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA.
Abstract:A synthetic, channel-forming peptide, derived from the alpha-subunit of the glycine receptor (M2GlyR), has been synthesized and modified by adding four lysine residues to the NH(2) terminus (N-K(4)-M2GlyR). In Ussing chamber experiments, apical N-K(4)-M2GlyR (250 microM) increased transepithelial short-circuit current (I(sc)) by 7.7 +/- 1.7 and 10.6 +/- 0.9 microA/cm(2) in Madin-Darby canine kidney and T84 cell monolayers, respectively; these values are significantly greater than those previously reported for the same peptide modified by adding the lysines at the COOH terminus (Wallace DP, Tomich JM, Iwamoto T, Henderson K, Grantham JJ, and Sullivan LP. Am J Physiol Cell Physiol 272: C1672-C1679, 1997). N-K(4)-M2GlyR caused a concentration-dependent increase in I(sc) (k(1/2]) = 190 microM) that was potentiated two- to threefold by 1-ethyl-2-benzimidazolinone. N-K(4)-M2GlyR-mediated increases in I(sc) were insensitive to changes in apical cation species. Pharmacological inhibitors of endogenous Cl(-) conductances glibenclamide, diphenylamine-2-dicarboxylic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid, 4,4'-dinitrostilben-2,2'-disulfonic acid, indanyloxyacetic acid, and niflumic acid] had little effect on N-K(4)-M2GlyR-mediated I(sc). Whole cell membrane patch voltage-clamp studies revealed an N-K(4)-M2GlyR-induced anion conductance that exhibited modest outward rectification and modest time- and voltage-dependent activation. Planar lipid bilayer studies yielded results indicating that N-K(4)-M2GlyR forms a 50-pS anion conductance with a k(1/2]) for Cl(-) of 290 meq. These results indicate that N-K(4)-M2GlyR forms an anion-selective channel in epithelial monolayers and shows therapeutic potential for the treatment of hyposecretory disorders such as cystic fibrosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号