首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An investigation of the pyranose ring interconversion path of alpha-L-idose calculated using density functional theory
Authors:Kurihara Youji  Ueda Kazuyoshi
Institution:Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan.
Abstract:The interconversion pathways of the pyranose ring conformation of alpha-L-idose from a (4)C1 chair to other conformations were investigated using density functional calculations. From these calculations, four different ring interconversion paths and their transition state structures from the (4)C1 chair to other conformations, such as B(3,O), and (1)S3, were obtained. These four transition-state conformations cover four possible combinations of the network patterns of the hydroxyl group hydrogen bonds (clockwise and counterclockwise) and the conformations of the primary alcohol group (tg and gg). The optimized conformations, transition states, and their intrinsic reaction coordinates (IRC) were all calculated at the B3LYP/6-31G** level. The energy differences among the structures obtained were evaluated at the B3LYP/6-311++G** level. The optimized conformations indicate that the conformers of (4)C1, (2)S(O), and B(3,O) have similar energies, while (1)S3 has a higher energy than the others. The comparison of the four transition states and their ring interconversion paths, which were confirmed using the IRC calculation, suggests that the most plausible ring interconversion of the alpha-L-idopyranose ring occurs between (4)C1 and B(3,O) through the E3 envelope, which involves a 5.21 kcal/mol energy barrier.
Keywords:Idopyranose conformation  Ab initio calculation  Transition state  Ring puckering
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号