首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phospholipid metabolism in the rat renal inner medulla
Authors:C Limas  C J Limas
Abstract:In view of the importance of phospholipids as a source of precursor fatty acids for the high prostaglandin synthesis in the renal inner medulla, we studied pathways of phospholipid esterification and degradation in the rat inner medulla. De novo acylation of 14C]arachidonate occurred predominantly in position 2 of phosphatidylcholine in the microsomal fraction. This newly esterified 14C]arachidonate was accessible to deacylation by a microsomal phospholipase A2 (EC 3.1.1.4) with alkaline optimum which was Ca2+-dependent and resistant to 0.1% deoxycholate. No phospholipase A1 (EC 3.1.1.32) activity against endogenous labeled phosphatidylcholine could be demonstrated in the microsomal fraction. When exogenous phosphatidylcholine labeled at position 2 was deacylated by renomedullary homogenates, labeled free fatty acid but no labeled lysophosphatidylcholine was recovered in the reaction products. This could be attributed to further degradation of generated lysophosphatidylcholine by a cytosolic lysophospholipase (EC 3.1.1.5). Sodium deoxycholate at a concentration of 0.1% or higher inhibited the lysophospholipase and allowed the demonstration of both A2 and A1 alkaline phospholipase activities in the homogenate. The major in vitro pathway of lysophosphatidylcholine disposition is further degradation by a cytosolic lysophospholipase, while reutilization for phosphatidylcholine synthesis through the action of a predominantly microsomal acyltransferase appears to be a minor pathway. In the presence of several acyl-CoAs, reutilization of lysophosphatidylcholine is significantly increased by an acyl-CoA:lysophosphatidylcholine acyltransferase (EC 2.3.1.23) but there is no preferential transfer of arachidonyl-CoA compared to other acyl-CoAs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号