首页 | 本学科首页   官方微博 | 高级检索  
     

DNA 序列中模式发现的一种快速算法
引用本文:李冬冬,王正志,杜耀华,晏春. DNA 序列中模式发现的一种快速算法[J]. 生物物理学报, 2005, 21(2): 121-129
作者姓名:李冬冬  王正志  杜耀华  晏春
作者单位:国防科技大学自动控制系,长沙,410073
基金项目:国防科大基础研究项目 JC02-03-021
摘    要:模式发现是生物信息学的一个重要研究方向,但目前的大部分算法还不能保证获得最优的模式.文章推导了针对三个序列片段相似性关系的判据,将其作为剪枝规则,提出并实现了一种深度优先的穷举搜索算法——判据搜索算法(criterion search algorithm,CRISA),理论分析表明,对绝大多数模式发现问题,CRISA具有多项式的计算时间复杂度和线性的空间复杂度。对仿真的和实际的生物序列数据的测试也表明,CRISA能够快速而完全地识别出序列中所有的模式,具有优于其它算法的总体评价,能够应用于实际的模式发现问题。

关 键 词:模式发现 判据 深度优先搜索
收稿时间:2004-06-04
修稿时间:2004-06-04

A fast motif finding algorithm for DNA sequence
LI Dong-dong,WANG Zheng-zhi,DU Yao-hua,YAN Chun. A fast motif finding algorithm for DNA sequence[J]. Acta Biophysica Sinica, 2005, 21(2): 121-129
Authors:LI Dong-dong  WANG Zheng-zhi  DU Yao-hua  YAN Chun
Affiliation:Department of Automatic Control, National University of Defense Technology, Changsha 410073, China
Abstract:Motif finding is an important research field in bioinformatics. Many algorithms on motif finding have been developed at present, but among these algorithms only few can find the correct motif surely, such as MITRA. In this paper, a new exhaust search algorithm named CRISA (criterion search algorithm) is proved. It can accomplish the exhaust search with less computation resource. This target is achieved based on the criterion describing the relations between three similar segments deduced in this paper. Using this criterion as pruning rule, CRISA can reduce the search space effectively in the deeply first search process. Theoretical analysis on CRISA is done in this paper, and the results show that under some rather loose conditions, the computational complexity of CRISA is a polynomial function of the length and the number of the input sequences. Then, some tests using simulated and biological data have been done and the results show that it is more efficient than other exhaust search algorithms obviously, and its search speed is even faster than that of many non-exhaust search algorithms.
Keywords:Motif finding  Criterion  Depth first search  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《生物物理学报》浏览原始摘要信息
点击此处可从《生物物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号