首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Analysis of the Heat Stress Induced Quenching of Variable Chlorophyll a Fluorescence in Beet Spinach Leaves: Possible Accumulation of Oxidized Quencher P680+ under High Illumination
Authors:N G Bukhov  Prasanna Mohanty
Institution:1. Membrane Bioenergetics and Photobiochemistry Unit, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
Abstract:Effect of preheating of beet spinach leaves on chlorophyll a fluorescence yield was analyzed with the help of additional high intensity illumination pulses using a pulse modulated fluorometer. Preheating at mildly elevated temperature (35–45°C) causes a shift in the redox state of secondary donor of photosystem II, possibly due to uncoupling of phosphorylation because of thermal induced membrane disorganization and associated alkalinization of intra thylakoid space. Also, at these preheating temperatures, a rise in photosystem I catalyzed electron transfer has been shown to occur. These two effects induce rapid quenching of Chi a fluorescence, which drops even in the presence of actinic light, below the level of initial fluorescence (Fo′ monitored by the weak modulated probing light. Preheating of leaf segments induces an increase in fluorescence in the presence of dluron, which blocks electron flow between two photosystems, and thus this increases in fluorescence yield (Fo′ as monitored by weak modulated light, is not solely due to disorganization of light harvesting Chi-protein complex but also due to a shift in the redox equilibrium of the donor at the oxidizing side of photosystem II resulting in rapid reduction of QA the stable primary acceptor of photosystem II. In 50°C preheated DCMU treated samples, the fluorescence yield increases in weak modulated light and it approaches that of maximal steady state (Fmax) level. At preheating temperature of 48°–50°C, the inactivation of enzymes in the reducing side of photosystem I, causes an impairment of the reoxidation of QA and under this condition, a strong illumination causes quenching of Chi a fluorescence. This quenching seems to arise because of accumulation of the P680+, the oxidized physiological donor of photosystem which is a quencher of Chi a fluorescence. This quenching depended on the pulse intensity and duration which saturates P680+ accumulation and is greatly manifested when water oxidation complex is damaged.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号