Abstract: | Abstract. We document post‐fire succession on xeric sites in the southern Appalachian Mountains, USA and assess effects of 20th century reduction in fire frequency on vegetation structure and composition. Successional studies over 18 yr on permanent plots that had burned in 1976–1977 indicate that tree mortality and vegetation response varied with fuel load and fire season. In the first three years after fire, hardwood sprouts dominated tree regeneration. On sites where summer and autumn fires reduced litter depth to less than 1 cm, densities of shade‐intolerant Pinus seedlings increased steadily over this period. 4 to 8 yr after fire, large numbers of newly established seedlings and sprouts had grown to 1 – 10 cm DBH. By year 18 growth of these saplings led to canopy closure on most sites. Herbaceous cover and richness peaked in the first decade after fire, then declined. On similar sites that had not burned in more than 50 yr, regeneration of shade‐intolerant Pinus spp. and mean cover and richness of herbs were considerably lower than those observed on recently burned plots. Reconstructions of landscape conditions based on observed post‐fire succession and 20th century changes in fire regime suggest that reductions in fire frequency circa 1940 led to substantial changes in forest structure and decreases in cover and richness of herbaceous species. |