首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light inside sponges
Authors:Franz Brümmer  Martin Pfannkuchen  Alexander Baltz  Vera Thiel
Institution:a Biologisches Institut, Abteilung Zoologie Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
b Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany
Abstract:Sponges are the most basal metazoan organisms. As sessile filter feeders in marine or freshwater habitats, they often live in close association with phototrophic microorganisms. Active photosynthesis by the associated microorganisms has been believed to be restricted to the outer tissue portion of the sponge hosts. However, phototrophic microorganisms have also been detected in deeper tissue regions. In many cases they are found around spicules, siliceous skelettal elements of demosponges and hexactinellids. The finding of phototrophic organisms seemingly assembled around spicules led to the hypothesis of a siliceous light transmission system in sponges. The principle ability to conduct light was already shown for sponge derived, explanted spicules. However it was not shown until now, that in deed sponges have a light transmission system, and can harbour photosynthetically active microorganisms in deeper tissue regions.Here we show for the first time, that, as hypothesized 13 year ago, sponge spicules in living specimens transmit light into deeper tissue regions. Our results demonstrate that in opposite to the actual opinion, photosynthetically active microorganisms can also live in deeper tissue regions, and not only directly beneath the surface, when a light transmission system (spicules) is present.Our results show the possibility of massive or globular sponges being supplied with photosynthetic products or pathways throughout their whole body, implying not only a more important role of these endobioses. Our findings also elucidate the in-situ function of a recently more and more interesting biomaterial, which is unique not only for its mechanical, electrical and optical properties. Biosilica is of special interest for the possibility to produce it enzymatically under environmental conditions.
Keywords:Aplysina  light conduction  porifera  spicula  sponges  Tethya
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号