首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Statistical mechanical deconvolution of thermal transitions in macromolecules. III. Application to double-stranded to single-stranded transitions of nucleic acids
Authors:Ernesto Freire  Rodney L Biltonen
Abstract:The statistical mechanical deconvolution theory for macromolecular conformational transitions is extended to the case of nucleic acids transitions involving strand separation. It is demonstrated that the partition function, Q, as well as all the relevant thermodynamic quantities of the system, can be calculated from experimental scanning calorimetric data. In particular, it is shown that important thermodynamic parameters such as the size of the average cooperative unit during strand separation, the mean helical segment length, and the mean coil-segment length can be calculated from the average excess enthalpy function 〈ΔH〉. The theory is applied to the double-stranded to single-stranded transition of the system poly(A)·poly(U) at different salt concentrations. It is shown that the mean helical segment length is a monotonically decreasing function of the temperature well before strand separation occurs. On the other hand, the mean coil segment length remains practically constant until temperatures very close to Tm. Both experimental findings clearly indicate that the unfolding of poly(A)·poly(U) proceeds through the formation of many short helical sequences. The cooperative unit for the strand separation is calculated to be about 120 base pairs and essentially independent of the salt concentration. The existence of a minimum helical segment length of 10 ± 2 base pairs within the double-stranded form is calculated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号