首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces
Authors:Wu Danielle  Ganatos Peter  Spray David C  Weinbaum Sheldon
Institution:Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room T-404B, Convent Avenue and 140th Street, New York, NY 10031, USA.
Abstract:A Stokesian fluid stimulus probe (SFSP), capable of delivering quantifiable pN level hydrodynamic forces, is developed to distinguish the electrophysiological response of the cell process and cell body of osteocyte-like MLO-Y4 cells without touching the cell or its substrate. The hydrodynamic disturbance is a short lived (100 ms), constant strength pressure pulse that propagates nearly instantaneously through the medium creating a nearly spherical expanding fluid bolus surrounding a 0.8 μm micropipette tip. Laboratory model experiments show that the growth of the bolus and the pressure field can be closely modeled by quasi-steady Stokes flow through a circular orifice provided the tip Reynolds number, Re(t)<0.03. By measuring the deflection of the dendritic processes between discrete attachment sites, and applying a detailed ultrastructural model for the central actin filament bundle within the process, one is able to calculate the forces produced by the probe using elastic beam theory. One finds that forces between 1 and 2.3 pN are sufficient to initiate electrical signaling when applied to the cell process, but not the much softer cell body. Even more significantly, cellular excitation by the process only occurs when the probe is directed at discrete focal attachment sites along the cell process. This suggests that electrical signaling is initiated at discrete focal attachments along the cell process and that these sites are likely integrin-mediated complexes associated with stretch-activated ion channels though their molecular structure is unknown.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号