首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase
Authors:Ikeda Y  Koizumi N  Kusano T  Sano H
Institution:Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
Abstract:WPK4 is a wheat protein kinase related to the yeast protein kinase SNF1, which plays a role in catabolite repression. To identify proteins involved in signal transduction through WPK4, we performed yeast two-hybrid screens and isolated two cDNA clones designated as TaWIN1 and TaWIN2. Both encode 14-3-3 proteins that, upon autophosphorylation, bind the C-terminal regulatory domain of WPK4. Mutational analysis through amino acid substitution revealed that TaWIN1 and TaWIN2 primarily bind WPK4 through phosphoserines at the positions 388 and 418, both located in the C-terminal region. Mutations in the conserved residues of the TaWIN1 amphipathic groove impaired the ability of TaWIN1 to bind to WPK4. A screen for in vitro phosphorylation of proteins involved in nutrient metabolism revealed a putative WPK4 substrate, nitrate reductase; its hinge 1 region was efficiently phosphorylated by WPK4. Subsequent far Western blots showed that it specifically bound TaWIN1. Since nitrate reductase has been shown to be inactivated by phosphorylation upon 14-3-3 binding, the present findings strongly suggest that WPK4 is the protein kinase responsible for controlling the nitrogen metabolic pathway, assembling the nitrate reductase and 14-3-3 complex through its phosphorylation specificity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号