首页 | 本学科首页   官方微博 | 高级检索  
     


Proton exchange and local stability in a DNA triple helix containing a G.TA triad
Authors:Jiang L  Russu I M
Affiliation:Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, 203 Hall-Atwater Laboratories, Wesleyan University, Middletown, CT 06459, USA.
Abstract:Recognition of a thymine-adenine base pair in DNA by triplex-forming oligonucleotides can be achieved by a guanine through the formation of a G.TA triad within the parallel triple helix motif. In the present work, we provide the first characterization of the stability of individual base pairs and base triads in a DNA triple helix containing a G.TA triad. The DNA investigated is the intramolecular triple helix formed by the 32mer d(AGATAGAACCCCTTCTATCTTATATCTGTCTT). The exchange rates of imino protons in this triple helix have been measured by nuclear magnetic resonance spectroscopy using magnetization transfer from water and real-time exchange. The exchange rates are compared with those in a homologous DNA triple helix in which the G.TA triad is replaced by a canonical C+.GC triad. The results indicate that, in the G.TA triad, the stability of the Watson–Crick TA base pair is comparable with that of AT base pairs in canonical T.AT triads. However, the presence of the G.TA triad destabilizes neighboring triads by 0.6–1.8 kcal/mol at 1°C. These effects extend to triads that are two positions removed from the site of the G.TA triad. Therefore, the lower stability of DNA triple helices containing G.TA triads originates, in large part, from the energetic effects of the G.TA triad upon the stability of canonical triads located in its vicinity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号