首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparative analysis of changes in short EEG segments during music perception based on event-related synchronization/desynchronization and wavelet synchronicity
Authors:L B Oknina  S V Kuptsova  A S Romanov  E L Masherow  O A Kuznetsova  E V Sharova
Institution:1. Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
2. Burdenko Neurosurgery Institute, Russian Academy of Medical Sciences, Moscow, 125047, Russia
Abstract:The goal of the pilot study was to analyze the characteristics of changes in short EEG segments recorded from 32 sites during perception of musical melodies by healthy subjects depending on logical (recognition) and emotional (pleasant/unpleasant) estimation of the melody. For this purpose, the changes in event-related synchronization/desynchronization and the indices of wavelet synchrony of EEG responses were compared in 31 healthy subjects (18 to 60 years old). It has been shown that melody recognition during logical estimation of music is accompanied by event-related desynchronization in the left frontal-parietal-temporal area. Emotional estimation of a melody is characterized by event-related synchronization in the left frontal-temporal area for pleasant melodies, desynchronization in the temporal area for unpleasant melodies, and desynchronization in the occipital area for melodies inducing no emotional response. The analysis of EEG wavelet synchronization characterizing reactive changes in the interaction between cortical areas shows that the most distinct topographic differences are associated with the type of music processing: logical (familiar/unfamiliar) or emotional (pleasant/unpleasant). The changes in interhemispheric connections between the associative cortical areas (central, frontal, temporal) are greater during emotional estimation, while the changes in inter- and intrahemispheric connections between the projection areas of the acoustic analyzer (temporal area) are greater during logical estimation. It is assumed that the revealed event-related synchronization/desynchronization is most likely to reflect the activation component of musical fragment estimation, whereas wavelet analysis provides insight into the character of musical stimulus processing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号