首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics and thermodynamics of complex formation with iron of a new series of dicatecholspermidine siderophore-like ligands
Authors:Sindi Kais  El Hage Chahine Jean-Michel
Affiliation:ITODYS - Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris 7 - CNRS UMR 7086, 1 rue Guy de La Brosse, 75005 Paris, France.
Abstract:This article deals with the kinetics and thermodynamics of complex formation between Fe(3+) and a series of four synthetic chelators of the 1,2-dicatecholspermidine family (LA5, LA3, LE5 and LE3). LA5 and LA3 bear a carboxylic moiety linked to the central nitrogen by either a C(5) or a C(3) chain, whereas LE5 and LE3 bear an ethyl ester moiety. The following data concern LE5, LE3, LA5 and LA3, respectively. Each species undergoes four acid-base dissociations of the hydroxyls of the catechols with, for the two hydroxyls in position 1; average pK(2a)=7.30, 7.25, 7.45, 7.34 and, for the two hydroxyl in position 2; average pK(3a)=12.35, 12.65, 12.10, 12.60. The LA5 and LA3 species also undergo proton-dissociations of their carboxylic moieties; pK(1a)=5.20 and 5.10. The four species form one-to-one iron complexes with, for the 1-hydroxyl; an average pK(22a)=2.65, 2.25, 2.95, 2.80, for the 2-hydroxyl; pK(33a)=5.20, 5.40, 6.10, 5.40 and, for the carboxylic moieties; pK(11a)=3.90 and 4.45. In the vicinity of pH 5, Fe(3+) is rapidly exchanged between FeNta and the four ligands. This occurs with direct rate constants: k(1)=(1.3+/-0.1)x10(4), (1.4+/-0.2)x10(4), (3.3+/-0.2)x10(4), (1.4+/-0.1)x10(4)M(-1)s(-1), and reverse rate constants: k(-1)=(7+/-0.5)x10(4), (9+/-1)x10(4), (1.15+/-0.15)x10(5), (7+/-0.5)x10(4)M(-1)s(-1). The kinetic data, the pK(a) values of the free ligands, those of the iron complexes and the beta value of FeNta allow us to determine the affinity constants of the four ligands for iron: logbeta(1)=33, 34, 33, 34, and pFe=23.3, 24.6, 22.2, 24.3. This implies that these ligands of the dicatecholspermidine family may act as siderophores. They may also be used as drug carriers which can utilize the bacterial iron-acquisition paths.
Keywords:Siderophores   Chelation   Drug targeting   Fast kinetics
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号