In vitro and in silico characterization of open-cell structures of trabecular bone |
| |
Authors: | S. J. Ramos-Infante M. A. Pérez |
| |
Affiliation: | M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain |
| |
Abstract: | This work aimed to perform a detailed in vitro and in silico characterization of open-cell structures, which resemble trabecular bone, to elucidate osteoporosis failure mechanisms. Experimental and image-based computational methods were used to estimate Young′s modulus and porosities of different open-cell structures (Sawbones; Malmö, Sweden). Three different open-cell structures with different porosities were characterized. Additionally, some open-cell structures were scanned using a microcomputed tomography system (μCT) to non-destructively predict specimen Young′s modulus of the structures by developing voxel-based and tetrahedral finite element (FE) models. A 3D reconstruction and FE analyses were used. The experimental and computational results with different element types (linear and quadratic tetrahedrons and voxel-based meshes) were compared with Sawbones data (Sawbones; Malmö, Sweden) revealing important differences in Young′s modulus and porosities. The specimens with high and low volume fractions were best represented by linear and quadratic tetrahedrons, respectively. These results could be used to develop new osteoporosis-prevention strategies. |
| |
Keywords: | Micro-CT data open-cell structures voxel meshes tetrahedral meshes in vitro and in silico compressive tests |
|
|