首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell number-dependent regulation of Hsp70B' expression: evidence of an extracellular regulator
Authors:Noonan Emily J  Place Robert F  Rasoulpour Reza J  Giardina Charles  Hightower Lawrence E
Institution:Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA.
Abstract:Hsp70B' is a unique member of the human Hsp70 family of chaperones about which information is scarce. Unlike the major inducible Hsp72 protein, Hsp70B' is strictly inducible having little or no basal expression levels in most cells. We observed that Hsp70B' appears transiently in response to heat stress whereas Hsp72 levels persist for many days. Also, Hsp70B' is optimally induced when cell numbers are low, whereas Hsp72 levels are greatest at higher cell number. Hsp70B' promoter activation was measured by flow cytometry using an Hsp70B' promoter-driven GFP construct. In heat stressed cells, promoter activation is cell number independent over a broad range. However, when cell number increases beyond a certain population size, cells are less stress inducible for Hsp70B' and induction becomes highly cell number-dependent. Cell number differences in Hsp70 activation cannot be explained by changes in Hsf-1 DNA-binding activity or hyperphosphorylation. Cells with few or no cell matrix attachments (laminin-coated and low attachment plates, respectively) appear to be more sensitive to cell number-dependent inhibition. Medium conditioned by the low cell number (LCN) populations supports increased Hsp70B' promoter activation in high cell number (HCN) cultures. Likewise, medium conditioned in HCN culture conditions causes decreased activation of Hsp70B' promoter in LCN cultures. As HCN-conditioned medium has all the components necessary for cell growth, two possibilities for the activation of Hsp70B' gene expression exist: an inhibitory component that accumulates in culture medium at HCN, or an activator that accumulates at LCN.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号