首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A gyrase mutant with low activity disrupts supercoiling at the replication terminus
Authors:Pang Zhenhua  Chen Ray  Manna Dipankar  Higgins N Patrick
Institution:Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA.
Abstract:When a mutation in an essential gene shows a temperature-sensitive phenotype, one usually assumes that the protein is inactive at nonpermissive temperature. DNA gyrase is an essential bacterial enzyme composed of two subunits, GyrA and GyrB. The gyrB652 mutation results from a single base change that substitutes a serine residue for arginine 436 (R436-S) in the GyrB protein. At 42 degrees C, strains with the gyrB652 allele stop DNA replication, and at 37 degrees C, such strains grow but have RecA-dependent SOS induction and show constitutive RecBCD-dependent DNA degradation. Surprisingly, the GyrB652 protein is not inactive at 42 degrees C in vivo or in vitro and it doesn't directly produce breaks in chromosomal DNA. Rather, this mutant has a low k(cat) compared to wild-type GyrB subunit. With more than twice the normal mean number of supercoil domains, this gyrase hypomorph is prone to fork collapse and topological chaos near the terminus of DNA replication.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号