首页 | 本学科首页   官方微博 | 高级检索  
   检索      


THE DISTRIBUTION OF LIPIDS IN THE HUMAN NERVOUS SYSTEM-V. GANGLIOSIDES AND ALLIED NEUTRAL GLYCOLIPIDS OF INFANT BRAIN
Authors:M T Vanier    M Holm    J E Månsson  L Svennerholm
Institution:Department of Neurochemistry, Psychiatric Research Centre, University of Goteborg, Sweden
Abstract:—Gangliosides and allied neutral glycosylceramides were isolated from human infant (2-24 months of age) cerebral cortex and white matter. The individual glycolipids were separated quantitatively by a combination of column and thin-layer chromatographic methods on silica gel, DEAE-cellulose and Sephadex G-25. In cerebral cortex GD1a and GM1 were the major fractions and constituted more than 70 per cent of the total gangliosides. The concentrations of neutral glycolipids, except for galactosylceramides, were very low: lactosylceramide and glucosylceramide comprised 30 and 5 nmol/g wet weight, respectively. In white matter their concentrations were 10 times higher. The ganglioside concentration was only 50 per cent of that in cerebral cortex: the difference was accounted for mainly by the much lower content of the major di- and trisialogangliosides. Stearic acid was the predominant fatty acid of all brain gangliosides. GM3, and GD3 had a considerable content of the very long-chain fatty acids, C22-C24, particularly in the white matter. Glucosylceramide and lactosylceramide had almost identical fatty acid patterns between each other in cerebral cortex and white matter. In the cerebral cortex stearic acid and in the white matter the very long-chain acids predominated. d20:1 Sphingosine comprised more than 20 per cent of total sphingosine in all the gangliosides of the Gl- and G2-series. GM3, and GD3 like lactosylceramide contained significantly less of d20:1 sphingosine. The findings suggest the existence of separate compartments for the biosynthesis of the gangliosides. Glucosylceramides and lactosylceramides of white matter have the same ceramide composition as the galactosylceramides with normal fatty acids and are thus unlikely to be intermediates in the metabolism of the major brain gangliosides which have a completely different fatty acid composition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号