Protonmotive force driven 6-deoxyglucose uptake by the oral pathogen,Streptococcus mutans Ingbritt |
| |
Authors: | C. W. Keevil A. S. McDermid P. D. Marsh D. C. Ellwood |
| |
Affiliation: | (1) PHLS Centre for Applied Microbiology and Research, Pathogenic Microbes Research Laboratory, Porton Down, SP4 OJG Salisbury, Wilts, UK |
| |
Abstract: | Streptococcus mutans Ingbritt was grown in glucose-excess continuous culture to repress the glucose phosphoenolpyruvate phosphotransferase system (PTS) and allow investigation of the alternative glucose process using the non-PTS substrate, (3H) 6-deoxyglucose. After correcting for non-specific adsorption to inactivated cells, the radiolabelled glucose analogue was found to be concentrated approximately 4.3-fold intracellularly by bacteria incubated in 100 mM Tris-citrate buffer, pH 7.0. Mercaptoethanol or KCl enhanced 6-deoxyglucose uptake, enabling it to be concentrated internally by at least 8-fold, but NaCl was inhibitory to its transport. Initial uptake was antagonised by glucose but not 2-deoxyglucose. Evidence that 6-deoxyglucose transport was driven by protonmotive force (p) was obtained by inhibiting its uptake with the protonophores, 2,4-dinitrophenol, carbonylcyanide m-chlorophenylhydrazine, gramicidin and nigericin, and the electrical potential difference () dissipator, KSCN. The membrane ATPase inhibitor, N,N1-dicyclohexyl carbodiimide, also reduced 6-deoxyglucose uptake as did 100 mM lactate. In combination, these two inhibitors completely abolished 6-deoxyglucose transport. This suggests that the driving force for 6-deoxyglucose uptake is electrogenic, involving both the transmembrane pH gradient (pH) and . ATP hydrolysis, catalysed by the ATPase, and lactate excretion might be important contributors to pH.Abbreviations DNP 2,4-dinitrophenol - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N1-dicyclohyxyl carbodiimide - p protonmotive force - pH transmembrane pH gradient - transmembrane electrical potential difference |
| |
Keywords: | Streptococcus mutans Protonmotive force Sugar transport Chemostat culture Dental disease |
本文献已被 SpringerLink 等数据库收录! |
|