首页 | 本学科首页   官方微博 | 高级检索  
   检索      


WATER-REGULATORY BEHAVIOUR IN TERRESTRIAL GASTROPODS
Authors:DAVID J PRIOR
Institution:Physiology Group, School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506, and Friday Harbor Laboratories, University of Washington
Abstract:1. Terrestrial snails and slugs are exceedingly susceptible to dehydration due to evaporative water loss from the integument and lung surface, and the deposition of a dilute mucous trail. Active slugs can lose 30–40% of their initial body weight (IBW) within 2 h. 2. Both field and laboratory studies have revealed that habitat selection by snails and slugs is well correlated with the availability of water. In addition, numerous species display homing behaviour, returning directly to their moist secluded daytime resting sites at dawn. 3. Several aspects of locomotor activity are affected by body hydration and environmental conditions such as relative humidity. Moist conditions result in termination of aestivation in snails and a generally higher level of activity in both snails and slugs. In contrast, severe dehydration initiates aestivation in snails and an increase in the intensity and duration of circadian locomotor activity in slugs. 4. Huddling behaviour is a specialized example of the general preference of slugs for moist habitats. When groups of slugs are exposed to dry environmental conditions, they form closely packed aggregations. This response results in a decrease in the rate of dehydration of the individual slugs. 5. When slugs have been dehydrated to about 90% IBW, rhythmic closures of the pneumostome are initiated. As dehydration progresses there is a reduction in the open diameter of the pneumostome. These responses reduce the total exposure of the lung surface and thereby evaporative water loss. In slugs dehydrated to about 80 % IBW, these responses can result in a 7 % reduction in water loss. 6. When slugs have been dehydrated to about 65% IBW (67·6 ± 4·3% IBW) they move on to a moist surface, assume a characteristic flattened posture and remain quiescent while water is absorbed through the surface of the foot. Once they are rehydrated (to 93·5 ± 12·4% IBW) they move off the moist surface. Thus there exists a specific dehydration threshold for the initiation of contact-rehydration and a rehydration set-point at which the response is terminated. 7. Both initiation and termination of contact-rehydration are controlled by variations in haemolymph osmotic pressure. The behaviour can be experimentally initiated by injection of hyperosmotic mannitol solution and terminated by injection of dilute saline. 8. Contact-rehydration involves bulk flow of water through an epithelial paracellular pathway in the integument of the foot. The rate of absorption of 14C]inulin during contact-rehydration is similar to that of water. The efficacy of water movement through the pathway is modulated by body hydration, the pathway being opened only in dehydrated slugs. 9. By means of the dual-limit control of contact-rehydration slugs can behaviourally regulate their body hydration and haemolymph osmolality within the tolerable hydration range described by the upper and lower limits.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号