首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The modulatory effect of membrane viscosity on structural and functional properties of the anion exchange protein of human erythrocytes
Authors:Z I Cabantchik  D Baruch  Y Keren-Zur  M Zangvill  H Ginsburg
Abstract:The sterol content of human erythrocyte membranes was modified by polyvinylpyrrolidone (PVP)-mediated enrichment or depletion of cholesterol (CHL) or incorporation of cholesteryl hemisuccinate (CHS). The effects of these modifications on osmotic fragility and anion exchange protein (AEP) disposition and function were evaluated. CHS enrichment was fast (1 hr, 37 degrees C) and led to a concentration-dependent crenation as well as a decrease in osmotic cell fragility, in parallel with increased membrane microviscosity. CHL caused similar but considerably less marked effects due to slower incorporation rates into membranes. CHS enrichment of cells induced susceptibility of AEP to trypsin, a protease which otherwise does not affect AEP in intact cells. Although transport rates of monosaccharides, nucleosides, and anions were markedly slowed down by CHS enrichment of cells in parallel with increased membrane viscosity, anion transport was the most affected. The temperature profile of anion transport in CHS-enriched cells revealed a 10-kcal/mol increase in the enthalpy of activation relative to normal cells. Anion transport measured in heteroexchange conditions (Cl in--pyruvate out) and (Cl in-sulfate out) was relatively more susceptible to CHS modification than when it was measured in homoexchange conditions (Cl in-Cl out). The results of these measurements indicate that CHS-mediated increase in membrane viscosity affects AEP translocation capacity and transmembrane disposition via changes in lipid compressibility. Specific effects of CHS on AEP function, however, could not be ruled out.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号