首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural investigation of catalytically modified F120L and F120Y semisynthetic ribonucleases.
Authors:V S deMel  M S Doscher  M A Glinn  P D Martin  M L Ram  and B F Edwards
Institution:Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201.
Abstract:The structures of two catalytically modified semisynthetic RNases obtained by replacing phenylalanine 120 with leucine and tyrosine have been determined and refined at a resolution of 2.0 A (R = 0.161 and 0.184, respectively). These structures have been compared with the refined 1.8-A structure (R = 0.204) of the fully active phenylalanine-containing enzyme (Martin PD, Doscher MS, Edwards BFP, 1987, J Biol Chem 262:15930-15938) and with the catalytically defective D121A (2.0 A, R = 0.172) and D121N (2.0 A, R = 0.186) analogs (deMel VSJ, Martin PD, Doscher MS, Edwards BFP, 1992, J Biol Chem 267:247-256). The movement away from the active site of the loop containing residues 65-72 is seen in all three catalytically defective analogs--F120L, D121A, and D121N--but not in the fully active (or hyperactive) F120Y. The insertion of the phenolic hydroxyl of Tyr 120 into a hydrogen-bonding network involving the hydroxyl group of Ser 123 and a water molecule in F120Y is the likely basis for the hyperactivity toward uridine 2',3'-cyclic phosphate previously found for this analog (Hodges RS, Merrifield RB, 1974, Int J Pept Protein Res 6:397-405) as well as the threefold increase in KM for cytidine 2',3'-cyclic phosphate found for this analog by ourselves.
Keywords:comparison of active site structure  loop conformational change  modulation of hydrogen bonding  mutants  protein semisynthesis  semisynthetic RNases  X-ray structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号