The induction and inhibition of differentiation in normal and leukaemic cells. |
| |
Authors: | D Metcalf |
| |
Affiliation: | Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Victoria, Australia. |
| |
Abstract: | For granulocytic-macrophage progenitor populations and their progeny, five glycoproteins have been identified: GM-CSF, G-CSF, multi-CSF, M-CSF and IL-6 that can regulate their proliferative activity, maturation and functional activities. The same glycoproteins also have a capacity to induce irreversible differentiation commitment in normal bipotential granulocyte-macrophage progenitors and in some myeloid leukaemic cell lines, which suggests that common cellular processes exist in both situations. The leukaemia inhibitory factor (LIF) is a glycoprotein, with intriguing properties, which can either induce differentiation in some myeloid leukaemic cell lines or prevent differentiation in normal totipotential embryonic stem cells. The data from the LIF studies suggest a genetic mechanism controlling self-generation that is relatively simple and may be common to all cells. However, the actual cellular response observed appears to depend on the nature of the responding cell. |
| |
Keywords: | |
|
|