首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced biodegradation of phenol by magnetically immobilized <Emphasis Type="Italic">Trichosporon cutaneum</Emphasis>
Authors:Hassan Ghorbannezhad  Hamid Moghimi  Ramezan Ali Taheri
Institution:1.Department of Microbial Biotechnology, School of Biology, College of Science,University of Tehran,Tehran,Iran;2.Nanobiotechnology Research Center,Baqiyatallah University of Medical Sciences,Tehran,Iran
Abstract:Aromatic compounds are abundant in aqueous environments due to natural resources or different manufacturer’s wastewaters. In this study, phenol degradation by the yeast, Trichosporon cutaneum ADH8 was compared in three forms namely: free cells, nonmagnetic immobilized cells (non-MICs), and magnetically immobilized cells (MICs). In addition, three different common immobilization supports (alginate, agar, and polyurethane foams) were used for cell stabilization in both non-MICs and MICs and the efficiency of phenol degradation using free yeast cells, non-MICs, and MICs for ten consecutive cycles were studied. In this study, MICs on alginate beads by 12 g/l Fe2O3 magnetic nanoparticles had the best efficiency in phenol degradation (82.49%) and this amount in the seventh cycle of degradation increased to 95.65% which was the highest degradation level. Then, the effect of magnetic and nonmagnetic immobilization on increasing the stability of the cells to alkaline, acidic, and saline conditions was investigated. Based on the results, MICs and non-MICs retained their capability of phenol degradation in high salinity (15 g/l) and acidity (pH 5) conditions which indicating the high stability of immobilized cells to those conditions. These results support the effectiveness of magnetic immobilized biocatalysts and propose a promising method for improving the performance of biocatalysts and its reuse ability in the degradation of phenol and other toxic compounds. Moreover, increasing the resistance of biocatalysts to extreme conditions significantly reduces costs of the bioremediation process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号