首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Griseofulvin interacts with microtubules both in vivo and in vitro
Authors:Klaus Weber  Jürgen Wehland  Wilhelm Herzog
Institution:Max Planck Institute for Biophysical Chemistry D-3400 Goettingen, West Germany
Abstract:Immunofluorescence microscopy using monospecific tubulin antibody shows that in vivo griseofulvin interferes with the expression of both cytoplasmic and spindle microtubules in tissue culture cells in a concentration-dependent manner. In mouse 3T3 cells cytoplasmic microtubules are destroyed at a griseofulvin concentration of 5 × 10?5m. At this concentration no increase of the mitotic index is observed but the cells are arrested in interphase, probably due to the destruction of cytoplasmic microtubules. Lowering the drug concentration to 10?5m allows 3T3 cells to accumulate in c-mitotic (“colchicin-mitotic”) arrest. In HeLa cells the display of spindle microtubules observed in drug-arrested cells appears similar to that seen in normal metaphase cells only at lower griseofulvin concentrations. Higher drug concentrations induce c-mitotic arrest accompanied by an increasing loss of typical metaphase tubulin structures.In vitro polymerization experiments with brain tubulin using both light-scattering and electron microscopy show that in the presence of griseofulvin tubulin can aggregate rapidly in the cold. This behaviour is not found in the absence of the drug. Thus both in vivo and in vitro experiments show that griseofulvin, like other c-mitotic drugs, acts at the level of tubulin polymerization and that its effects are concentration dependent.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号