首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electrotonic coupling between cercal afferents and giant interneurons in the American cockroach
Authors:CLeon Harris  Wanda Garrison
Institution:1. Department of Biological Sciences, State University College of Arts and Sciences, Plattsburgh, New York 12901, U.S.A.;2. Biochemistry and Biophysics Section, State University College of Arts and Sciences, Plattsburgh, New York 12901, U.S.A.
Abstract:Stimulation of the cercal nerve of the female American cockroach evokes a short-latency action potential in one giant axon in the ipsilateral connective of the ventral nerve cord. Neither procion yellow nor cobalt passes from the nerve cord into the cercal nerve, and the short-latency response disappears several weeks after removal of the cercus. Therefore, the short-latency spike is not due to a branch of the giant interneuron extending into the cercal nerve, but is presumably due to electrotonic coupling of cercal afferents to the giant. Responses of the presumed electrotonic junction to drugs, varied ionic concentrations and tonicity, and to cold are described. These responses and the impermeability of the junction to procion yellow suggest that the coupling is not by means of a gap junction. There is evidence for electrotonic coupling to another giant axon in the female, but this junction does not ordinarily transmit a spike. Electrotonic coupling is rare in males. In some females action potentials in giant interneurons excite cercal afferents electrically, and the afferents then re-excite the giants chemically. Electrotonic coupling may reduce fatigue and habituation of chemical synapses by depolarizing presynaptic terminals whenever the giants are active.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号