首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes
Authors:Binder Hans  Zschörnig Olaf
Institution:Department of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Liebigstr. 27, Leipzig, Germany. binder@rz.uni-leipzig.de
Abstract:To characterize the specificity of ion binding to phospholipids in terms of headgroup structure, hydration and lyotropic phase behavior we studied 1-palmitoyl-2-oleoyl-phosphatidylcholine as a function of relative humidity (RH) at 25 degrees C in the presence and absence of Li+, Na+, K+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cu2+ ions by means of infrared (IR) spectroscopy. All divalent cations and Li+ shift the gel-to-liquid crystalline phase transition towards bigger RH values indicating stabilization of the gel state. The observed shift correlates in a linearly fashion with the electrostatic solvation free energy for most of the ions in water that in turn, is inversely related to the ionic radius. This interesting result was interpreted in terms of the excess chemical potential of mixing of hydrated ions and lipids. Calcium, zinc and partially lithium, cause a positive deviation from the linear relationship. IR spectral analysis shows that the carbonyl groups become more accessible to the water in the presence of Mg2+, Ca2+, Sr2+ and Ba2+ probably because of their involvement into the hydration shell of the ions. In contrast, Be2+, Zn2+ and Cu2+ dehydrate the carbonyl groups at small and medium RH. The ability of the lipid to take up water is distinctly reduced in the presence of Zn2+ and, partially, of Cu2+ meaning that the headgroups have become less hydrophilic. The binding mode of Be2+ to lipid headgroups involves hydrolyzed water. Polarized IR spectra show that complex formation of the phosphate groups with divalent ions gives rise to conformational changes and immobilization of the headgroups. The results are discussed in terms of the lyotropic Hofmeister series and of fusogenic activity of the ionic species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号