首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diffusion, Transport, and Cell Membrane Organization Investigated by Imaging Fluorescence Cross-Correlation Spectroscopy
Authors:Jagadish Sankaran  Manoj Manna  Rachel Kraut
Institution: Department of Chemistry, National University of Singapore, Singapore
Singapore-MIT Alliance, National University of Singapore, Singapore
§ School of Biological Sciences, Nanyang Technological University, Singapore
Abstract:Cell membrane organization is dynamic and is assumed to have different characteristic length scales. These length scales, which are influenced by lipid and protein composition as well as by the cytoskeleton, can range from below the optical resolution limit (as with rafts or microdomains) to far above the resolution limit (as with capping phenomena or the formation of lipid “platforms”). The measurement of these membrane features poses a significant problem because membrane dynamics are on the millisecond timescale and are thus beyond the time resolution of conventional imaging approaches. Fluorescence correlation spectroscopy (FCS), a widely used spectroscopic technique to measure membrane dynamics, has the required time resolution but lacks imaging capabilities. A promising solution is the recently introduced method known as imaging total internal reflection (ITIR)-FCS, which can probe diffusion phenomena in lipid membranes with good temporal and spatial resolution. In this work, we extend ITIR-FCS to perform ITIR fluorescence cross-correlation spectroscopy (ITIR-FCCS) between pixel areas of arbitrary shape and derive a generalized expression that is applicable to active transport and diffusion. ITIR-FCCS is applied to model systems exhibiting diffusion, active transport, or a combination of the two. To demonstrate its applicability to live cells, we observe the diffusion of a marker, the sphingolipid-binding domain (SBD) derived from the amyloid peptide Aβ, on live neuroblastoma cells. We investigate the organization and dynamics of SBD-bound lipid microdomains under the conditions of cholesterol removal and cytoskeleton disruption.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号