首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dihydrofolate reductase and aminopterin resistance in Pneumococcus
Authors:Stephen H Benedict and Thomas C Gray
Institution:(1) Thomas Hunt Morgan School of Biological Sciences, University of Kentucky, Lexington, Kentucky, USA;(2) USAMRL, 40121 Fort Knox, Kentucky, USA
Abstract:Summary Wild-type pneumococci derived from Avery's strain R36A are sensitive to extracellular concentrations of the folate antimetabolite aminopterin exceeding 1.0x10-6 M. Three classes of resistant strains are phenotypically distinguishable: amiB-r, amiA-r and amiD-r strains are resistant to low (1.5x10-6 M), intermediate (0.5–4.0×10-5 M) and high (4.5x10-4 M) aminopterin levels respectively. The amiA and amiB regions are weakly linked, but linkage has not been established between either of these loci and the amiD region.Consistent with the maximum resistance conferred by mutations in the amiA locus, dihydrofolate (FH2) reductase in cell-free extracts (CFE) of amiA-r strains has a two- to six-fold greater affinity for the substrate than dose the enzyme in wild-type CFE (Table 1); FH2 reductase from amiA-r strains may also have reduced affinity for aminopterin. Specific activity of the enzyme is not affected by mutation in the amiA locus (Table 1) and its affinity for the cofactor (NADPH) is probably unaffected by mutation in this locus (Table 4). Dihydrofolate reductase activity in amiA5 CFE is considerably more thermolabile than that in wild-type CFE (Table 2).The enzyme in CFE of the high resistance strain amiD1 has the same affinity for the substrate, cofactor and antimetabolite as FH2 reductase in wild-type CFE (Figs. 1–4, 8 and 9; Table 4). However, specific activity of the enzyme in amiD1 CFE is 11-fold higher than that in wild-type CFE (Table 1) and it is much more heat stable (Table 2).Some properties of FH2 reductase in CFE of the high resistance recombinant strain amiA5amiD1 are intermediate between those in CFE of wild-type and amiD1.Preliminary results suggest that CFE of wild-type and amiA5 contain a factor, which is neither dialyzable nor heat sensitive, that has an inhibitory effect upon activity and stability of FH2 reductase in amiD1 CFE (Tables 2 and 3).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号